114 research outputs found

    Each Mycobacterium Requires a Specific Culture Medium Composition for Triggering an Optimized Immunomodulatory and Antitumoral Effect

    Get PDF
    Mycobacterium bovis bacillus Calmette-Guérin (BCG) remains the first treatment option for non-muscle-invasive bladder cancer (BC) patients. In research laboratories, M. bovis BCG is mainly grown in commercially available media supplemented with animal-derived agents that favor its growth, while biomass production for patient treatment is performed in Sauton medium which lacks animal-derived components. However, there is not a standardized formulation of Sauton medium, which could affect mycobacterial characteristics. Here, the impact of culture composition on the immunomodulatory and antitumor capacity of M. bovis BCG and Mycolicibacterium brumae, recently described as efficacious for BC treatment, has been addressed. Both mycobacteria grown in Middlebrook and different Sauton formulations, differing in the source of nitrogen and amount of carbon source, were studied. Our results indicate the relevance of culture medium composition on the antitumor effect triggered by mycobacteria, indicating that the most productive culture medium is not necessarily the formulation that provides the most favorable immunomodulatory profile and the highest capacity to inhibit BC cell growth. Strikingly, each mycobacterial species requires a specific culture medium composition to provide the best profile as an immunotherapeutic agent for BC treatment. Our results highlight the relevance of meticulousness in mycobacteria production, providing insight into the application of these bacteria in BC research

    Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications

    Get PDF
    Background Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. Results Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. Conclusions This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications.info:eu-repo/semantics/publishedVersio

    Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer

    Get PDF
    Altres ajuts: EU COST Action CA 17140. AV received an ICREA ACADEMIA award.By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4 cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4 colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4 tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material. Such specificity is combined with improved endosomal escape, what overall results in a precise and highly efficient tumor biodistribution. These data strongly support the functional recruitment as a convenient approach to generate protein materials for clinical applications. More precisely, they also support the unexpected concept that enhancing the unspecific membrane activity of a protein material does not necessarily compromise, but it can even improve, the selective cell targeting offered by an accompanying functional module. Statement of Significance: We have shown here that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies

    Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering

    Get PDF
    Altres ajuts: EU COST Action CA 17140. Villaverde A received an ICREA ACADEMIA award. Unzueta was supported by PERIS program from the Health Department of la Generalitat de Catalunya.Modular protein engineering is suited to recruit complex and multiple functionalities in single-chain polypeptides. Although still unexplored in a systematic way, it is anticipated that the positioning of functional domains would impact and refine these activities, including the ability to organize as supramolecular entities and to generate multifunctional protein materials. To explore this concept, we have repositioned functional segments in the modular protein T22-GFP-H6 and characterized the resulting alternative fusions. In T22-GFP-H6, the combination of T22 and H6 promotes self-assembling as regular nanoparticles and selective binding and internalization of this material in CXCR4-overexpressing tumor cells, making them appealing as vehicles for selective drug delivery. The results show that the pleiotropic activities are dramatically affected in module-swapped constructs, proving the need of a carboxy terminal positioning of H6 for protein self-assembling, and the accommodation of T22 at the amino terminus as a requisite for CXCR4 cell binding and internalization. Furthermore, the failure of self-assembling as regular oligomers reduces cellular penetrability of the fusions while keeping the specificity of the T22-CXCR4 interaction. All these data instruct how multifunctional nanoscale protein carriers can be designed for smart, protein-driven drug delivery, not only for the treatment of CXCR4 human neoplasias, but also for the development of anti-HIV drugs and other pathologies in which CXCR4 is a relevant homing marker

    Protein nanoparticles are nontoxic, tuneable cell stressors

    Get PDF
    Aim: nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. - Results: by repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. - Conclusion: the capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning

    The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICHistidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the His-mediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials

    Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs

    Get PDF
    Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4 cancer stem cells. The systemic administration of both nanostructured drugs in a colorectal cancer xenograft mouse model promotes efficient and specific local destruction of target tumor tissues and a significant reduction of the tumor volume. This observation strongly supports the concept of intrinsically functional protein nanoparticles, which having a dual role as drug and carrier, are designed to be administered without the assistance of heterologous vehicles

    Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells

    Get PDF
    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection

    Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability

    Get PDF
    The authors acknowledge the financial support granted to E.V. (PI12/00327) and R.M. (PI12/01861) from FIS, to E.V. (TV32013-133930) and to R.M. and A.V. (TV32013-132031) from La Marató de TV3 (416/C/2013), to A.V. from MINECO (Grant BIO2013-41019-P) and from the Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (NANOPROTHER and NANOCOMETS projects). We are grateful to the Protein Production Platform (CIBER-BBN-UAB) for protein production and purification services (http://www.ciber-bbn.es/en/programas/89-plataforma-de-produccion-de-proteinas-ppp), to the Servei de Cultius Cel·lulars, Producció d׳Anticossos i Citometria (SCAC), to the Servei de Microscòpia, both at the UAB and to the Soft Materials Service (ICMAB-CSIC/CIBER-BBN). Z.X. received a fellowship grant from China Scholarship Council (Grant no. 2011630065) and U.U. from ISCIII. AV received an ICREA ACADEMIA award.Homing peptides are exploited in nanomedicine to functionalize either free drugs or nanostructured materials used as drug carriers. However, the influence of multivalent versus monovalent peptide presentation on the interaction with the receptor and on the consequent intracellular delivery of the associated cargo remains poorly explored. By using a tumor-homing peptide (T22) with regulatable self-assembling properties we have investigated here if its display in a either a monomeric form or as multimeric, self-assembled protein nanoparticles might determine the efficacy of receptor-mediated penetrability into target cells. This has been monitored by using a fluorescent cargo protein (iRFP), which when fused to the homing peptide acts as convenient reporter. The results indicate that the nanoparticulate protein versions are significantly more efficient in mediating receptor-dependent uptake than their unassembled counterparts. These finding stresses an additional benefit of nanostructured materials based on repetitive building blocks, regarding the multivalent presentation of cell ligands that facilitate cell penetration in drug delivery applications

    Release of targeted protein nanoparticles from functional bacterial amyloids : A death star-like approach

    Get PDF
    Altres ajuts: we are indebted to CIBER de Bioingeniería, Biomateriales y Nanomedicina (projects NANOREMOTE and VENOM4CANCER) to EV and AV respectively, Marató de TV3 foundation (TV32013-132031) and CIBER (NanoMets3) to RM. Protein production has been partially performed by the ICTS "NANBIOSIS", more specifically by the Protein Production Platform of CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN)/IBB, at the UAB SepBioES scientific-technical service (http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/), whereas the in vivo biodistribution assays were performed in the NANBIOSIS Nanotoxicology platform (http://www.nanbiosis.es/unit/u18-nanotoxicology-unit/). We are also indebted to Fran Cortes from the Cell Culture and Cytometry Units of the Servei de Cultius Cel·lulars, Producció d'Anticossos i Citometria (SCAC), and to the Servei de Microscòpia at the UAB. AV received an ICREA ACADEMIA award. U.U received a Sara Borrell postdoctoral fellowship from ISCIII, MVC was supported by Miguel Servet contract from ISCIII, and JSF received and AECC postdoctoral fellowship.Sustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Here we describe a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs. Our approach combines the high performance of pNP, regarding specific cell targeting and biodistribution with the IB supramolecular organization, stability and cost effectiveness. This renders a platform able to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in tumor cells in a CXCR4 colorectal cancer xenograft model. In addition, the proposed system could be potentially adapted to any other protein construct offering a plethora of possible new therapeutic applications in nanomedicine
    corecore